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ABSTRACT

A simple model of how objects of di�erent masses stream towards each other as they
cluster gravitationally is described. The model shows how the mean streaming velocity
of dark matter particles is related to the motions of the parent dark matter haloes. It
also provides a reasonably accurate description of how the pairwise velocity dispersion
of dark matter particles di�ers from that of the parent haloes. The analysis is then
extended to describe the streaming motions of galaxies. This shows explicitly that
the streaming motions measured in a given galaxy sample depend on how the sample
was selected, and shows how to account for this dependence on sample selection. In
addition, we show that the pairwise dispersion should also depend on sample type.
Our model predicts that, on small scales, redshift space distortions should a�ect red
galaxies more strongly than blue.

Key words: galaxies: clustering { cosmology: theory { dark matter.

1 INTRODUCTION

Gravity makes objects cluster. Therefore, the motions of ob-
jects towards each other may provide information about the
background cosmology. Of course, di�erent subsets of the
clustering particles may trace the underlying streaming mo-
tions di�erently. The scale dependence of the mean stream-
ing vdm12 (r) of dark matter particles has been understood for
some time now (Hamilton et al. 1991; Nityananda & Pad-
manabhan 1994). But there has been little study of how this
statistic depends on trace-particle type.

To do this, we build a model in which gravitational
clustering is viewed as the combination of two processes.
The �rst arises from the fact that gravity causes matter to
stream towards local minima of the gravitational potential.
This requires a model of how matter which was initially
distributed rather smoothly around the centre of collapse
becomes redistributed into a more centrally concentrated
density pro�le as the collapse proceeds. The second process
is that these centres around which local collapses are oc-
curring, these clusters, are themselves moving towards each
other: clusters cluster. It is the combination of these two
types of motions which gives rise to the spatial distribution
and streaming motions of objects today.

Section 2.1 summarizes useful results which follow from
linear theory. Section 2.2 shows how the streaming motions
of collapsed dark matter haloes depend on halo mass. Sec-
tion 2.3 uses this to model the streaming motions of parti-

cles, rather than haloes. It shows what fraction of a particle's
streaming motion arises from the motion of its parent halo,
and what fraction must arise from motions within the halo.
These smaller scale motions are essentially a consequence of
the collapse around the halo centre we referred to earlier.
It then presents measurements from numerical simulations
which show that the model predictions are reasonably ac-
curate. It also shows that the model provides a reasonable
description of how the second moment of the pairwise ve-
locity distribution of the dark matter di�ers from that of
haloes.

Section 3 shows how to extend the model to study the
mean streaming motions and the pairwise velocity disper-
sion of galaxies and presents measurements from semian-
alytic galaxy formation simulations which show that the
model predictions are reasonably accurate. Section 4 dis-
cusses what this model implies if one wishes to use measure-
ments of the streaming motions of galaxies to make infer-
ences about cosmology.

2 THE MODEL

2.1 The mean streaming velocity

We will begin by reviewing the strategy which led to the
derivation of how vdm12 (r) depends on scale. The relevant
starting equation is the pair conservation equation in Pee-
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bles' book (Peebles 1980), but we will start with the equa-
tion in the form presented by Nityananda & Padmanabhan
(1994):

@ (1 + ��)

@ ln a
= �

v12(r)

Hr
3
h
1 + �(r)

i
(1)

where ��(r; a) is the volume averaged correlation function
on scale r at the time when the expansion factor is a, and
the Hubble constant is H. This says that if we know the
correlation function for all scales r and all times a, then the
assumption that the number of pairs is conserved allows us
to compute how v12(r) depends on scale today.

An approximate solution to this expression can be got
as follows (Peebles 1980). Assume that �� evolves accord-
ing to linear theory: ��(r; a) = [D(a)=D0]

2 ��(r; a0), where
D(a) is the linear theory growth factor at a, and D0 is
the growth factor at the present time when a = a0. In
an Einstein de-Sitter cosmology, D(a)=D0 = a=a0. Then
the left hand side is @ ��(r; a)=@ ln a = 2 f(
) ��(r; a), where
f(
) � @ lnD=@ lna. So, in this approximation we get

�
v12(r)

Hr
=

2f(
)

3

��(r; a)

1 + �(r; a)
: (2)

On large scales, � � 1, and so this is just the usual linear
theory expression with an extra factor of (1 + �) in the de-
nominator. While this approximation is �ne on large scales
(r � 10 Mpc=h), it underestimates the exact solution by a
factor of 3/2 or so on smaller scales (Juszkiewicz, Springel
& Durrer 1998; Sheth et al. 2000).

Hamilton et al. (1991) showed they could compute a
good estimate of the evolution of �(r; a), if the initial corre-
lation function is known (also see Nityananda & Padman-
abhan 1994). Hamilton et al. also showed that by inserting
their expression for the evolution of �(r; a) into equation (1)
above, they were able to describe the shape of vdm12 (r) well
on all scales.

While this approach is very useful for studying the
statistics of dark matter particles, it is not obvious that it
can be used to estimate the streaming motions of galaxies.
This is because one usually assumes that galaxies form at
di�erent times. This means that the number of galaxies is
not conserved, so the number of galaxy pairs is not con-
served. This means, for example, that the correlation func-
tion of galaxies refers to di�erent sets of particles at di�erent
times. Therefore, there is little reason to expect that insert-
ing the correlation function of galaxies into the pair conser-
vation equation should provide a good estimate of vgal12 (r)
today. We show below that, provided one makes the correct
choice of what one uses for �gal(r; a), the pair conservation
equation can be used to provide an accurate estimate of the
streaming motions of galaxies.

2.2 The haloes

This subsection is concerned with the �rst moment of the
pairwise velocity distribution of haloes identi�ed at the
present time. Every halo will be represented by one particle,
say, the one at the halo centre of mass today. Imagine trac-
ing these centre-of-mass particles back in time. By de�nition
the number of these particles is conserved, since all we're
doing is following them back to high redshift. Of course, at
high redshift, few if any of the haloes would actually have

collapsed around these centre-of-mass particles. Neverthe-
less, we will use the motions of these particles to represent
the motions of the halo centre of mass. Peebles' pair con-
servation equation, combined with the assumption that the
motion of a halo today is the same as that of its associated
centre-of-mass particle, says that if we knew �(r; a) for these
tracer particles, then we can compute vhalo12 (r) today.

So, to compute vhalo12 , we are stuck with the problem of
studying the spatial distribution (i.e., the bias factor) of a
special marked set of particles at earlier times. The case in
which the marked particles (in this case, the halo centres-
of-mass) are observed at a later epoch than when they were
marked is familiar: e.g. this is like the Mo & White (1996)
simple model for galaxies, in which galaxies formed in haloes
at z = 3 but we only observe them today. Here, we are
interested in the spatial distribution of the special particles
at earlier epochs than when they were marked.

The halo centre-of-mass particles are biased tracers of
the dark matter distribution. The large scale bias factor is
the square root of the ratio of the correlation function of
these particles to that of the dark matter correlation func-
tion on large scales. It depends on halo mass:

�hh(r) � b2(m)�0(r); (3)

and a similar equality holds for ��hh(r). Here �0(r) denotes
the initial correlation function of the dark matter extrapo-
lated using linear theory to the present time. (See Sheth et
al. 2000 for a discussion of why one uses the extrapolated lin-
ear theory function rather than the present day correlation
function in what follows.)

To a good approximation,

b(m) = 1 +
�2(m)� 1

Æc0 D(a)=D0
; (4)

where �(m) � Æc0=�(m) is a function which increases with
decreasing halo mass, and D(a) and D0 were de�ned earlier.
At the present time,D(a) = D0 and this is the familiar Eule-
rian bias formula from Mo & White (1996). The Lagrangian
bias factor is usually expressed as the ratio of �hh at the ini-
tial time to the linearly extrapolated �dm. This means that
the Lagrangian bias factor is

bLag(m) =

r
�hh(r)

�dm(r)

D(ai)

D0
=

D(ai)

D0
+
�2(m)� 1

Æc0

where ai denotes the expansion factor at the initial time.
Since ai � a0, bLag ! (�2�1)=Æc0, which is another familiar
expression from Mo & White (1996). So, in this approxima-
tion,

@ b(m)

@ lna
= f(
)

h
1� b(m)

i
: (5)

It is straightforward to insert these expressions for the
halo correlation function and its evolution into the pair con-
servation formula (equation 1) to see how di�erent vhalo12

is from vdm12 . If we study the streaming motions of haloes
of two di�erent masses, then we must replace b2(m) !
b(m1) b(m2). This gives

vhalo12 (r)

Hr
=

vdm12 (r)

Hr

b1b2[1 + �0(r)]

[1 + b1b2 �0(r)]

�
f(
)��0(r)

3

[b1(1� b2) + b2(1� b1)]

[1 + b1b2 �0(r)]
: (6)
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On the streaming motions of haloes and galaxies 3

Figure 1. Mean streaming motions in the GIF simulations. Open circles and crosses show the streaming motions of the haloes and the
dark matter, respectively. Solid and dashed curves show our predictions for the haloes (equation 8), and the dark matter (the sum of
equations 9 and 10). Dotted lines show the Hubble velocity for comparison.

If we insert the linear evolution approximation for the rela-
tion between the correlation function and v12 (equation 2),
then this becomes

vhalo12 (r)

Hr
�

vdm12 (r)

Hr

�
b1 + b2

2

�
1 + �0(r)

1 + b1b2 �0(r)
: (7)

Notice that when b1 = b2 = 1, then vhalo12 (r) = vdm12 (r). Also,
in the large separation (small ��) limit, vhalo12 (r)! (b1+b2)=2
times vdm12 (r). So, on average and on large separations, rela-
tive to the dark matter, massive haloes (b1+ b2) > 2 stream
towards each other whereas less massive haloes (b1+b2) < 2
stream away from each other. This makes some physical
sense; clusters cluster, so they are moving towards each
other, whereas smaller clumps are in or at the edges of ex-
panding voids, so they are separating from each other. This
linear bias of the streaming velocities at large separation is
consistent with the linear theory analysis of Fisher et al.
(1994).

Notice that v12 scales with the sum of the bias factors.
If one ignored the evolution of the bias factor when using
equation (2), one would have concluded that the scaling was
with the product of the bias factors|including the evolution
of the bias factor is essential to getting the correct answer.
Finally, notice that on smaller scales where �0 > 1, this anal-
ysis suggests that v12 of less massive haloes should be larger
than that of the dark matter, with the opposite trend being
true for massive haloes. Of course, the linear theory and lin-
ear evolution approximations we used to obtain equation (7)
are not accurate on small scales. Nevertheless, this provides
at least some indication of the small scale behaviour of the
halo streaming motions.

Fig. 1 compares this model with measurements in the
SCDM and �CDM GIF (Kau�mann et al. 1999) simula-
tions which were run by the Virgo collaboration (Jenkins
et al. 1999) and are now available to the public. The open
circles show the streaming motions of all the haloes in the
simulation box, and the solid line shows what our model
predicts. Speci�cally, it shows

�
V halo
12 (r)

Hr
� �

Z
dm1

Z
dm2

vhalo12 (r)

Hr

�
n(m1)n(m2)[1 + b(m1)b(m2)�0(r)]

�n2halo[1 + b2halo�0(r)]

=
2f(
)

3

bhalo ��0(r)

1 + b2halo�0(r)
: (8)

where �nhalo �
R
dmn(m) is the average number density of

haloes, bhalo �
R
dmn(m)b(m) is their average bias factor,

the weighting factor in the second line is the ratio of the
number of m1 and m2 halo pairs at r to the total number of
halo pairs at r, and the �nal expression follows from insert-
ing equation (7) for vhalo12 and using equation (2) for vdm12 .
Our model is reasonably accurate down to scales of order a
Mpc/=h or so. For comparison, the dotted curves show the
Hubble velocity. The crosses show the streaming motions of
the dark matter particles in the simulations, and the dashed
curve curve shows the prediction associated with the model
described in the next section.

2.3 The dark matter

The large scale net streaming motion of the dark matter can
be got from our expression for the halo motions by integrat-
ing up the contribution to the streaming motion from pairs
in di�erent mass haloes, weighting by the fraction of the to-
tal number of pairs which are in such haloes, and weighting
by the halo mass function:

�
v2halo12 (r)

Hr
= �

Z
dm2

Z
dm1

m1n(m1)

��

m2n(m2)

��

�
[1 + b(m1)b(m2)�0(r)]

1 + �dm(r)

vhalo12 (r)

Hr

= �
vdm12 (r)

Hr

1 + �0(r)

1 + �dm(r)
: (9)

The �nal equality follows from inserting equation (6), noting
that

R
dmmn(m) � 1, and using the fact that the bias

factors are de�ned so that
R
dmmn(m) b(m) � 1.

We can now make two important points. The �rst is
that, at large separations, this expression equals vdm12 (r) =
v2halo12 (r); in this regime the streaming motions of the dark
matter particles are entirely due to the fact that the haloes
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which contain the particles are moving. Moreover, in this
regime, vdm12 (r) � vL12(r), where v

L
12 is got from equation (2)

by using the linear theory values of � and ��. The second is
that this expression exactly equals that in Sheth et al. (2000)
for the contribution to v12(r) from particles which are in
separate haloes. This will be important in what follows.

Notice that on smaller scales, �0(r) < �dm(r). In this
regime the halo motions only account for a fraction of
vdm12 (r). The remaining contribution to vdm12 (r) must arise
from the streaming motions of pairs in which both parti-
cles are in the same halo. This means that the fact that
our model for halo motions is not accurate on small scales
will not matter very much for the small scale value of vdm12
because, on small scales, the fraction of pairs which are in
separate haloes, and so are a�ected by this inaccuracy, is
small. We turn, therefore, to a discussion of the streaming
motions of pairs in which both particles are in the same halo.

If haloes are stable, then the streaming motion within
a halo exactly cancels the Hubble ow: �v12(r)=Hr = 1. In
this case, the contribution from pairs which are in the stable
haloes equals unity timesZ

dm
m2n(m)

��2
�(rjm)

1 + �dm(r)
=

�1halo(r)

1 + �dm(r)
;

wherem2�(rjm) denotes the number of pairs at separation r
which are in the same halo which has mass m; it depends on
the density pro�les of haloes. For all halo shapes of interest,
this expression approaches unity at very small r, because
�dm(r) = �1halo(r) + �0(r) � �1halo(r), and �dm(r) � 1 on
scales which are smaller than a typical halo. So, if stable
clustering is correct, then �vdm12 (r)=Hr = 1 on small scales.
In fact, the mean pairwise velocity on small scales depends
on the low-mass behaviour of n(m) and �(rjm)|in general,
there is no guarantee that n(m) and �(rjm) will conspire to
give stable clustering (Ma & Fry 2000; Sheth et al. 2000).

In particular, Section 4 of Sheth et al. (2000) shows that
the small scale term is

�
v1halo12

Hr
=

@

@lna

Z
dm

m2n(m; a)

��2

Z r

0

dy

r

y2

r2
�(yjm;a)

[1 + �(r; a)]

=
@lnm�(a)

@lna

[��1halo(r; a)� �1halo(r; a)]

3[1 + �(r; a)]
; (10)

where �(rjm; a) is proportional to the number of pairs in the
same m-halo which have separation r, and n(m; a) is the
number density of virialized m-haloes at time a. In Sheth
et al., n(m;a) depended on time, and the halo pro�le did
as well, because virialized haloes were assumed to have pro-
�les of the form given by Navarro, Frenk & White (1997),
and these halo shapes depend on m=m�(a), and on the ra-
tio of the average density within the virialized halo to the
background density at the time it virialized. (Strictly speak-
ing, the expression above assumes that all of the time de-
pendence of the halo shape can be written as a function of
m=m�|see Sheth et al. for details.)

We can use this expression to estimate the small scale
term within the context of our model as follows. In the pre-
vious section, we identi�ed haloes at the present time and
studied how the spatial distribution of the halo centres-of-
mass evolved. In such a model, the number density of haloes
is �xed to the value today, n(m; a0), but the pro�le changes
from, say a tophat to a more centrally concentrated shape.
Equation (9) shows that the contribution to the streaming

Figure 2. Pairwise dispersions in the GIF simulations. Open cir-
cles and crosses show the streaming motions of the haloes and
the dark matter, respectively. Solid and dashed curves show pre-
dictions for the haloes and the dark matter (from Sheth et al.
2000).

motions from particles in separate haloes is independent of
the details of how this happens. However, recall that this
contribution exactly equals the two-halo contribution to vdm12
worked out by Sheth et al. (2000). This means that the one-
halo contributions to v12 must also be the same in both
approaches. In particular, this means that however the pro-
�le changes from a tophat to an NFW shape, it must change
in just such a way that the �nal answer for the streaming
motions of the dark matter particles equals equation (10).
Indeed, we can use this requirement to constrain how the
pro�le changes from the initial tophat to the �nal NFW
cusp|the Appendix shows a worked example of how to do
this.

2.4 The pairwise velocity dispersion

So far, we have shown how the mean streaming motions
of the dark matter and the haloes are related. Sheth et
al. (2000) discuss how to do this for the second moment
of the pairwise velocity distribution. They argued that be-
cause the dark matter particles receive substantial nonlinear
kicks to their initial velocities (essentially, the virial motions
within haloes), whereas the haloes do not (Sheth & Diafe-
rio 2000), the pairwise dispersion of the dark matter should
be signi�cantly larger than that of the haloes. Fig. 2 com-
pares what their model predicts with the simulations (we
refer the reader to their paper for details of the model). The
open circles and crosses show the pairwise dispersion of the
dark matter and the haloes respectively, and the dashed and
solid curves show their model predictions. The model is rea-
sonably accurate on large scales, and not very accurate on
small scales. Sheth et al. (2000) discuss why this happens for
the dark matter. For the haloes, this discrepancy appears
on scales which are of the order of a typical m� halo and
smaller. This suggests that the discrepancy almost surely
arises from using linear theory to model the spatial distri-
bution and velocities of haloes on scales which are smaller
than the smoothing scale used to make the model prediction.
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3 GALAXIES

The previous section showed that the �rst moment of the
pairwise velocity distribution of haloes is di�erent from that
of the dark matter. It showed that massive haloes separated
by large distances are streaming together more rapidly than
less massive haloes at the same separation, and that this dif-
ference scaled with one rather than two powers of the halo
bias factor. It also showed that the dark matter statistic was
obtained by weighting the halo statistic by the number of
dark matter particle pairs per halo. The second moments of
the pairwise velocity distributions are also di�erent. In this
case, also, the dark matter statistic is got from the halo one
by weighting by the number of particle pairs per halo. How-
ever, the pairwise dispersion is also sensitive to the fact that
virial motions within haloes can be substantially higher than
the motions of the haloes themselves. As a result, the pair-
wise velocity dispersion of dark matter particles is substan-
tially larger than that of haloes, on all scales. This section
studies what these results imply for the pairwise motions of
galaxies.

We will model galaxies as random particles in dark mat-
ter haloes. That is, the motion of the galaxies is the same as
that of the dark matter particle with which they are asso-
ciated. In this sense there is no velocity bias in our model;
the fact that velocity statistics for the dark matter and the
galaxies may, nevertheless, be di�erent, arises solely from
the fact that dark matter statistics weight each halo propor-
tional to halo mass, whereas galaxy statistics do not. Such
models for the di�erence between the statistics of galaxies
and dark matter particles have received considerable atten-
tion recently. Seljak (2000), Peacock & Smith (2000) and
Scoccimarro et al. (2000) have used them to model the spa-
tial distribution of galaxies, Sheth & Diaferio (2000) describe
how to model the distribution function of galaxy peculiar
velocites, and Sheth et al. (2000) describe how to use these
models to do analytically what Jing, Mo & B�orner (1998)
did numerically in their study of the pairwise velocity dis-
persion of galaxies.

Within the context of this model, galaxies are treated
by setting

vgal12 (r) = v1gal12 (r) + v2gal12 (r); (11)

where the two terms denote the contribution to the statistic
from galaxies in the same and in di�erent haloes, respec-
tively. The second term on the right hand side can be got
by modifying equation (9):

v2gal12 (r)

Hr
=

Z
dm2

Z
dm1

g(m1)n(m1)

��gal

g(m2)n(m2)

��gal

�
[1 + b(m1)b(m2)�0(r)]

1 + �gal(r)

vhalo12 (r)

Hr
(12)

where

��gal =

Z
dmg(m)n(m) and

�gal(r) =

Z
dm

g2(m)n(m)

��gal

�(rjm)

��gal

+

Z
dm2

Z
dm1

g(m1)n(m1)

��gal

g(m2)n(m2)

��gal

�
h
b(m1)b(m2)�0(r)

i

� �1halogal (r) + b2gal �0(r): (13)

Here g(m) and g2(m) denote the �rst and second factorial
moments of the distribution of the number of galaxies in
m-haloes, and we set g2(m) = 0 if g(m) < 1 (see Sheth &
Saslaw 1994 for why it is the factorial moment which enters
in the de�nition of �gal). There are details associated with
how one treats the central galaxy in a halo, but, for the most
part, these amount to a small e�ect (see Sheth & Diaferio
2000), so we have ignored them|they add complications
but no essential change to the logic of our argument.

On scales larger than a few Mpc/h, v2gal12 dominates
over the one-halo contribution. If we assume linear theory
for the evolution of the two-halo term (equation 2), then we
can set 2f(
)��0=3 ! �vdm12 =Hr times 1 + �0(r), and then
equation (12) reduces to

v2gal12 (r)

Hr
�

vdm12 (r)

Hr
bgal

�
1 + �0(r)

1 + �gal(r)

�
: (14)

This shows that, on large scales, the streaming motions of
galaxies can be biased relative to the dark matter. The ex-
tent to which they are biased is related to how di�erently
they are clustered, and this, in turn, depends on the g(m)
relation.

On smaller scales, the streaming motions are dominated
by galaxy pairs in which both members are in the same halo.
A little thought shows that this can be computed simply by
setting ��! ��gal and m2 ! g2(m) in equation (10). This is
because the g(m) relation does not introduce any additional
time dependence|recall that the number density of haloes
in the present model is �xed to the value it has today, and
the galaxies are to be thought of simply as marked tracer
particles within the haloes.

This has an interesting consequence. Suppose one
wishes to use the pair conservation equation to estimate
vgal12 (r). Then the model above suggests that, on small scales,
simply inserting the observed galaxy correlation function
into equation (1) should be reasonably accurate. However,
on larger scales, doing this leads to an estimate of vgal12 which
is incorrect, for the same reason that neglecting the evolu-
tion of the bias factor leads one to conclude, incorrectly, that
v12 should scale as b2gal rather than as bgal.

3.1 Comparison with simulations

To illustrate how our model works, we will use the g(m)
relations we obtained from the semianalytic GIF �CDM
models of Kau�mann et al. (1999) which are now publi-
cally available. Sheth & Diaferio (2000) provide a �tting
formula for the g(m) relation of a GIF galaxy catalog
which was constructed by choosing all galaxies brighter than
MV = �17:7 + 5 log h, after accounting for the e�ects of
dust. We divided that catalog up into two subsamples based
on colour (galaxies labelled as being redder or bluer than
B � I = 1:8) and on star-formation rate (rates greater or
less than 2M�=yr). Fig. 5 shows these relations. The dashed
lines show the following �ts:

NAll(m) = (m11=700)
0:9 + 0:5 e�4[log10(m11=5:6)]

2

+(m11=30)
0:75e�(2=m11)

2

NBlue(m) = (m11=500)
0:8 + 0:6 e�4[log10(m11=6:2)]

2

c 0000 RAS, MNRAS 000, 000{000



6 R. K. Sheth, A. Diaferio, L. Hui & R. Scoccimarro

Figure 3. Mean number of bright galaxies as a function of par-
ent halo mass in the �CDM GIF semianalytic galaxy formation
models of Kau�mann et al. (1999). Top panel shows the result
of dividing the sample into two based on colour. Bottom panel
shows a division based on star formation rate. Crosses, circles,
squares and triangles are for objects classi�ed as being red, blue,
quiescent and star-forming galaxies respectively.

NRed(m) = NAll(m)�NBlue(m)

NhSFR(m) = 0:015 + (m11=7000)
0:9 + e�8[log10(m11=56:2)]

2

NlSFR(m) = NAll(m)�NhSFR(m) (15)

where m11 is the halo mass in units of 1011M�=h. The solid
lines are the same in both panels; they show NAll(m), and
they equal the sum of the two dashed lines. These relations
can be used to compute the statistics of one of these galaxy
samples, rather than dark matter particles, by setting g(m)
equal to the appropriate Ngal(m) relation.

In addition to these mean Ngal(m) relations, our models
also require the second factorial moment of the number of
galaxies per halo distribution. We have approximated it by
setting it equal to

g2(m) = �2(m) g2(m); (16)

where �(m) = log10[20 g(m)]1=2 if g(m) � 5, and � = 1
when g(m) is larger. Because � = 1 for a Poisson distribu-
tion, this approximately accounts for the fact that the scat-
ter in galaxy counts is sub-Poisson in low mass haloes. If we
use the same galaxy sample that Scoccimarro et al. (2000)
did, then our model for the scatter is similar to theirs.

The correlation functions for these four subsamples are
shown in Fig. 4: crosses, open circles, triangles and squares
show �gal(r) for red, blue, star-forming and quiescent galax-
ies in the GIF simulations. Filled circles show the correlation
function of the dark matter particles. Notice how similar the
correlation function of the blue sample is to that of the star-
forming sample, how similar the red and quiescent samples
are, and how di�erent the blue and star-forming samples
are from the red and quiescent samples. See Kau�mann et
al. (1999), or Benson et al. (2000) for a discussion of the
physical reasons for this.

The two solid curves show the result of using our model
to compute the correlation functions of the red and blue
samples, because these di�er the most from each other. We
did this by setting g(m) in equation (13) equal to the appro-

Figure 4. Correlation functions of di�erent tracers of the dark
matter density �eld in the �CDM GIF semianalytic galaxy for-
mation model. Filled circles are for the dark matter, crosses are
for red galaxies, squares for galaxies which have low star forma-
tion rates, triangles for galaxies with high star formation rates,
and open circles for blue galaxies. The two solid curves show our
model predictions for the red and blue galaxies, and the dotted
curve shows the predicted dark matter correlation function.

priate Ngal(m) relation. The dotted curve shows our calcu-
lation of �dm(r) (which has g(m) = m). The bottom panel

shows how b �
p
�gal=�dm depends on scale. Both panels

show that our model provides a good description of the sim-
ulation results. In computing our model predictions, we as-
sumed that the two samples both trace their parent dark
matter haloes similarly. That is, we used the same func-
tion �(rjm) for both the red and the blue samples. If the
red galaxies were more centrally concentrated than the blue,
we could have incorporated it into our analysis by adjust-
ing �(rjm). The agreement between the simulations and our
model curves in which we made no such adjustment suggests
that if the red galaxies are concentrated more towards the
centres of their parent haloes, it is only a weak e�ect.

We turn, therefore, to the �rst and second moments
of the pairwise velocity distribution for these four subsam-
ples. Fig. 5 shows results for the same semianalytic galaxy
samples shown in Fig. 4. As before, crosses, squares, trian-
gles and open circles show galaxies classi�ed as being red,
quiescent, star-forming, or blue. Filled circles show the cor-
responding statistics of the dark matter particles. As for
the correlation functions, the blue and star-forming samples
are quite di�erent from the red and quiescent samples. Our
model shows that this arises simply from the fact that these
samples have rather di�erent Ngal(m) relations|blue, star
forming galaxies are not in clusters.
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On the streaming motions of haloes and galaxies 7

Figure 5. The mean streaming velocity (left) and pairwise velocity dispersion (right) in the �CDM GIF semianalytic galaxy formation
models. Filled circles are for the dark matter, crosses are for red galaxies, squares for galaxies which have low star formation rates,
triangles for galaxies with high star formation rates, and open circles for blue galaxies. The solid and dotted curves show our predictions
for the red and blue galaxies, and the dark matter, respectively.

Notice that blue galaxies (circles) have the smallest
streaming motions, and red galaxies (crosses) have the
largest v12 values. Our model predicts that larger stream-
ing motions at large separations indicate a higher amplitude
of clustering on those scales. Comparison with Fig. 4 shows
that the correlation functions of the red galaxies are biased
high relative to the dark matter, whereas the blue galaxies
are biased low. This is in qualitative agreement with our
model.

The solid lines in Fig. 5 provide a more quantitative
comparison between our model predictions for the red and
blue galaxies, and the values of the galaxy velocities mea-
sured in the GIF simulation. The model predictions are in
reasonable agreement with the simulations, although the
agreement is certainly not as good as it was for the cor-
relation functions. Sheth et al. (2000) discuss the reason for
the overestimate in v12(r) on large scales (e.g., these models
do not satisfy the integral constraint). The bottom panels
show the ratio of the galaxy velocities to those of the dark
matter; i.e., bv12 � vgal12 =v

dm
12 , and similarly for b�12 . This ra-

tio is scale dependent on smaller scales. Our model describes
the scale dependence reasonably well.

4 DISCUSSION

We presented a simple model of how the streaming mo-
tions of galaxies depends on galaxy separation. We tested
the model using the publically available semi-analytic galaxy
catalogues of Kau�mann et al. (1999). In these semi-analytic

galaxy formation models, the mean streaming motions de-
pend rather strongly on how the galaxy sample was selected.
For example, blue galaxies have smaller streaming motions
than red galaxies. We showed that our model was able to de-
scribe the di�erences between a wide range of semi-analytic
galaxy catalogues rather well (Fig. 5).

Our model predicts a very close relationship between
the streaming motions of the galaxies and their spatial distri-
bution. Optical and IRAS galaxies cluster di�erently; there-
fore, they must be biased di�erently relative to the dark
matter (e.g. Marzke et al. 1995; Fisher et al. 1994). If the
streaming motions of optical galaxies are the same as the
dark matter, then our model predicts that the streaming
motions of IRAS galaxies must be di�erent from that of the
dark matter. In other words, whether or not the streaming
motions of a given galaxy sample trace the motions of the
underlying dark matter depends on how the sample was se-
lected. Thus, in the absence of strong arguments for why
a given galaxy sample is expected to have a bias factor of
unity, one should be cautious when interpretting measure-
ments of the streaming motions of galaxies.

If the correlation function and the streaming motions of
two di�erent galaxy samples have been measured, then the
model described here says that the square root of the ratio
of the two correlation functions (at, say, 20 Mpc/h) should
equal the ratio of the streaming motions on the same scale.
This can be used to test the validity of the model. Again,
however, caution is required because this relationship is only
true on large scales. For the semi-analytic galaxy samples we
presented, this simple linear biasing was a good approxima-
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tion on scales larger than about 10 Mpc=h (although our
model is able to describe the scale dependence of this ratio
even on smaller scales). This is interesting in view of the
fact that Juszkiewicz et al. (2000) found that ellipticals and
spirals have the same value of v12 on separations of about
10 Mpc/h, even though they estimate that bE=bS � 2.

In addition to studying how the mean streaming veloc-
ity depends on galaxy type, our Fig. 5 also shows that the
second moment of the pairwise velocity distribution depends
strongly on galaxy type. For example, our model of the pair-
wise dispersion suggests that the dispersion of blue galaxies
should be substantially smaller than that of red ones (al-
though this di�erence depends on the colour cut), especially
on scales of 1 Mpc=h or so, and is in good quantitative agree-
ment with simulations on scales larger than this. Now, the
e�ects of redshift space distortions are larger if the pairwise
dispersion is increased. This means that, on small scales, the
amplitude of the redshift space correlation function of red
galaxies should be substantially smaller that the real space
correlation function of red galaxies, but that the di�erence
between real and redshift space correlation functions should
not be as dramatic for blue galaxies. This is a generic predic-
tion of these sorts of galaxy formation models. This suggests
that galaxy redshift samples cut by colour should provide a
useful and direct test of these models.

Dividing a galaxy sample by colour allows another sim-
ple test of these models. At large separations, where most
pairs are in separate haloes, the model described above pre-
dicts that the cross-correlation function of the two colour
samples should simply be the geometric mean of the two
individual samples. If the two galaxy samples both trace
their parent dark matter haloes in the same way (our Fig. 4
shows that this assumption describes the semianalytic mod-
els well), then this will be approximately true even on
smaller scales. (It will not be exactly true on because the
scatter in the Ngal(m) relations are, typically, sub-Poisson.)
Data sets currently available should be able to test this pre-
diction.
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APPENDIX A: SMALL SCALE STREAMING

MOTIONS

On small scales, the correlation function is dominated by
pairs from the same halo: � � �1halo. On these scales, the
correlation function on comoving scale x is

�(x) =

Z
dm

m2n(m)

��

�(xjm)

��
(A1)

where, for haloes of virial massm which have density pro�les
of the form given by Navarro , Frenk & White (1997),

�(xjm) =
c3 �2(c)

4�r3vir
g
�
cx

xvir

�
; (A2)

where g(y) is given in Sheth et al. (2000). Here rvir is the
virial radius of the halo in proper physical coordinates,
xvir = rvir=a is the comoving virial radius, and c(m) is a
parameter which describes how centrally concentrated the
halo pro�le is: it is the ratio of the virial radius to a cen-
tral core radius, and it depends on the halo mass, and the
normalization term is

�(c) �
h
ln(1 + c)� c=(1 + c)

i�1
: (A3)

The mean streaming motions from these close pairs is given
by equation (10) in the main text.

We would like to study what happens if we make the
pro�le of the region containing m depend on time in the
following way: we would like to use the same family of pro-
�les, such as the NFW set, to describe the density run at
any time, and we want to parametrize the evolution of the
pro�le shape by changing the values of the pro�le's parame-
ters. There is no physical reason why the NFW form should
describe the density run around a region which has yet to
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virialize; we are only using this to illustrate how our argu-
ment works.

For NFW pro�les, this means that we will think of
X(a) = Xa as the comoving boundary of the region con-
taining m at the time when the expansion factor is a: ini-
tially X(ai) = Xi, and today X(a0) = xvir. In addition, we
will allow the concentration parameter to depend on mass
as well as time: c(m; a) = ca. The idea is that the density
run around the centre of the region of radius Xa containing
m was presumably di�erently concentrated at ai than it is
today. In particular, we would like to see if this model can
produce the same streaming motions as equation (10) in the
main text.

To show what is required for this to happen, set
mn(m)=�� = f(m), and also set m = 4�X3

i ��0=3, where Xi is
the initial comoving radius of the halo, and ��0 = ��=a3 is the
comoving density of the background. Then the expression
for the correlation function becomes

�(x) =

Z
dmf(m)

�
caXi

Xa

�3 �2(ca)

3
g
�
cax

Xa

�
: (A4)

The volume integral of this is

��(x) =

Z
dmf(m)

�
caXi

Xa

�3 �2(ca)

x3

Z x

0

dy y2 g
�
cay

Xa

�

=

Z
dmf(m)�2(ca)

�
Xi

x

�3
�g
�
cax

Xa

�
; (A5)

where we have de�ned �g(y) �
R y
0
dz z2g(z). So

@ ��(x)

@ lna
=

Z
dmf(m)

"
@ ln�2(ca)

@ lna

�
Xi

x

�3
�2(ca) �g

�
cax

Xa

�

+
@ ln(ca=Xa)

3

@ ln a

�2(ca)

3

�
caXi

Xa

�3
g
�
cax

Xa

�#
:(A6)

This will result in the same streaming motions as equa-
tion (10) if

@ ln�2(ca)

@ lna
=

6f

3 + n�

and

@ ln(ca=Xa)
3

@ lna
= �

6f

3 + n�

; (A7)

where n� is the slope of the linear power spectrum on the
scale on which the rms density uctuation is 1.686, and
f
 � @ lnD(a)=@ ln a � 
0:6, where D(a) is the linear the-
ory growth factor. This sums up what is required of the
time dependence of the concentration ca and the comoving
radius Xa containing m. Note that these requirements are
non-trivial, because both c and X depend on the mass m,
but we are requiring that the derivatives work out to be
independent of m.

Our requirement that the same NFW form hold at all
times means that the pro�le shape evolves as

�a(s)

��
=

�(ca)=3

s(s+ (Xa=ca)=Xi)2

=
�a0(S)

��0
D3=(3+n�)

�
S + 1=c0

S +D2=(3+n)=c0

�2

; (A8)

where s is the comoving distance from the centre in units
of the initial comoving scale Xi, whereas S is in units of
the virial radius at a0. The second equality follows from

Figure A1. The evolution of the mass pro�le if we require that
the density pro�le have the NFW form at all times. For most
of the comoving volume, the mass in a given comoving shell in-
creases with time. Only within the core of the object does the
mass decrease with time.

the scalings above for the evolution of �(ca) and Xa=ca, and
setting D � D(a)=D0. The pro�le evolves in such a way that
the density on scales s > (Xa=ca)=Xi grows as a increases,
as we expect. On much smaller scales, s � (Xa=ca)=Xi,
and the pro�le shape is more like (caXi=Xa)

2 �(ca)=S /
D�1=(3+n)=S: on small scales, the density decreases with
time!

Because this small scale behaviour of the density seems
contrary to our intuition, we thought it worth studying the
evolution of the mass as a function of comoving scale. The
scalings above imply that the fraction of the total mass m =
M(s)=M that is in the range s and ds from the halo centre
when the growth factor is D � D(a)=D0 is

dm(s)

ds
/

s�(c0)D
3=(3+n�)h

s+D2=(3+n�)=[c0(�nl=
)1=3]
i2 : (A9)

Fig. A1 shows an example of how the mass gets redistributed
as the pro�le evolves. It was constructed by setting n� =
�1:5, c0 = 9 and Dnl=
 = 180 in equation (A9) (the �rst
two values approximate those of an m� halo in a �CDM
simulation). The solid, dashed, and dot-dashed curves show
equation (A9) at D = 1, 0:75 and 0:5 respectively. For most
of the volume of the halo, the mass in a given comoving
shell increases as D increases. Only well within the core of
the object does it decrease with time. Strictly speaking, we
should only show the shape of the pro�le out to the radius
Xa which contains the mass m. At D = 1, Xa is the virial
radius, which is at s = 1=5:6 � 0:18; Xa was larger earlier, so
that the total mass contained in the pro�le remains constant.

A similar analysis of the Hernquist pro�le shows the
same qualitative features:

�a(S)

��
=

�a0(S)

��0
D5=(3+n�)

�
S + b0

S + b0D2=(3+n�)

�3
: (A10)
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